
6/16/2018

1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All rights reserved. 1

Chapter 5 Loops

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 2

Motivations
Suppose that you need to print a string (e.g.,
"Welcome to Java!") a hundred times. It would be
tedious to have to write the following statement a
hundred times:

System.out.println("Welcome to Java!");

So, how do you solve this problem?

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 3

Opening Problem

System.out.println("Welcome to Java!");
System.out.println("Welcome to Java!");
System.out.println("Welcome to Java!");
System.out.println("Welcome to Java!");
System.out.println("Welcome to Java!");
System.out.println("Welcome to Java!");

…
…
…
System.out.println("Welcome to Java!");
System.out.println("Welcome to Java!");
System.out.println("Welcome to Java!");

Problem:

100
times

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 4

Introducing while Loops
int count = 0;
while (count < 100) {
System.out.println("Welcome to Java");
count++;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All rights reserved. 5

Objectives
� To write programs for executing statements repeatedly using a while loop

(§5.2).
� To follow the loop design strategy to develop loops (§§5.2.1–5.2.3).
� To control a loop with a sentinel value (§5.2.4).
� To obtain large input from a file using input redirection rather than typing

from the keyboard (§5.2.5).
� To write loops using do-while statements (§5.3).
� To write loops using for statements (§5.4).
� To discover the similarities and differences of three types of loop statements

(§5.5).
� To write nested loops (§5.6).
� To learn the techniques for minimizing numerical errors (§5.7).
� To learn loops from a variety of examples (GCD, FutureTuition,

Dec2Hex) (§5.8).
� To implement program control with break and continue (§5.9).
� To write a program that displays prime numbers (§5.11).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 6

while Loop Flow Chart
while (loop-continuation-condition) {

// loop-body;

Statement(s);

}

int count = 0;

while (count < 100) {

System.out.println("Welcome to Java!");

count++;

}

6/16/2018

2

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 7

Trace while Loop

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

Initialize count

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 8

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

(count < 2) is true

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 9

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

Print Welcome to Java

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 10

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

Increase count by 1
count is 1 now

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 11

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

(count < 2) is still true since count
is 1

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 12

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

Print Welcome to Java

animation

6/16/2018

3

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 13

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

Increase count by 1
count is 2 now

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 14

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

(count < 2) is false since count is 2
now

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 15

Trace while Loop

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

The loop exits. Execute the next
statement after the loop.

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 16

Problem: Repeat Addition Until Correct

Recall that Listing 3.1 AdditionQuiz.java gives a
program that prompts the user to enter an answer
for a question on addition of two single digits.
Using a loop, you can now rewrite the program to
let the user enter a new answer until it is correct.

IMPORTANT NOTE: If you cannot run the buttons, see
https://liveexample.pearsoncmg.com/slide/javaslidenote.doc.

RepeatAdditionQuiz Run

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 17

Problem: Guessing Numbers
Write a program that randomly generates an
integer between 0 and 100, inclusive. The program
prompts the user to enter a number continuously
until the number matches the randomly generated
number. For each user input, the program tells the
user whether the input is too low or too high, so
the user can choose the next input intelligently.
Here is a sample run:

GuessNumberOneTime Run

GuessNumber Run

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 18

Problem: An Advanced Math Learning Tool

The Math subtraction learning tool program
generates just one question for each run. You can
use a loop to generate questions repeatedly. This
example gives a program that generates five
questions and reports the number of the correct
answers after a student answers all five questions.

SubtractionQuizLoop Run

6/16/2018

4

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 19

Ending a Loop with a Sentinel Value
Often the number of times a loop is executed is not
predetermined. You may use an input value to
signify the end of the loop. Such a value is known
as a sentinel value.

Write a program that reads and calculates the sum
of an unspecified number of integers. The input 0
signifies the end of the input.

SentinelValue Run

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 20

Caution
Don’t use floating-point values for equality checking in a
loop control. Since floating-point values are
approximations for some values, using them could result
in imprecise counter values and inaccurate results.
Consider the following code for computing 1 + 0.9 + 0.8
+ ... + 0.1:

double item = 1; double sum = 0;
while (item != 0) { // No guarantee item will be 0

sum += item;
item -= 0.1;

}
System.out.println(sum);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 21

do-while Loop

do {

// Loop body;

Statement(s);

} while (loop-continuation-condition);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 22

for Loops
for (initial-action; loop-

continuation-condition; action-
after-each-iteration) {

// loop body;
Statement(s);

}

int i;
for (i = 0; i < 100; i++) {
System.out.println(

"Welcome to Java!");
}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 23

Trace for Loop

int i;
for (i = 0; i < 2; i++) {
System.out.println(

"Welcome to Java!");
}

Declare i

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 24

Trace for Loop, cont.

int i;
for (i = 0; i < 2; i++) {
System.out.println(

"Welcome to Java!");
}

Execute initializer
i is now 0

animation

6/16/2018

5

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 25

Trace for Loop, cont.

int i;
for (i = 0; i < 2; i++) {
System.out.println("Welcome to Java!");

}

(i < 2) is true
since i is 0

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 26

Trace for Loop, cont.

int i;
for (i = 0; i < 2; i++) {
System.out.println("Welcome to Java!");

}

Print Welcome to Java

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 27

Trace for Loop, cont.

int i;
for (i = 0; i < 2; i++) {
System.out.println("Welcome to Java!");

}

Execute adjustment statement
i now is 1

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 28

Trace for Loop, cont.

int i;
for (i = 0; i < 2; i++) {
System.out.println("Welcome to Java!");

}

(i < 2) is still true
since i is 1

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 29

Trace for Loop, cont.

int i;
for (i = 0; i < 2; i++) {
System.out.println("Welcome to Java!");

}

Print Welcome to Java

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 30

Trace for Loop, cont.

int i;
for (i = 0; i < 2; i++) {
System.out.println("Welcome to Java!");

}

Execute adjustment statement
i now is 2

animation

6/16/2018

6

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 31

Trace for Loop, cont.

int i;
for (i = 0; i < 2; i++) {
System.out.println("Welcome to Java!");

}

(i < 2) is false
since i is 2

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 32

Trace for Loop, cont.

int i;
for (i = 0; i < 2; i++) {
System.out.println("Welcome to Java!");

}

Exit the loop. Execute the next
statement after the loop

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 33

Note
The initial-action in a for loop can be a list of zero or more
comma-separated expressions. The action-after-each-
iteration in a for loop can be a list of zero or more comma-
separated statements. Therefore, the following two for
loops are correct. They are rarely used in practice,
however.

for (int i = 1; i < 100; System.out.println(i++));

for (int i = 0, j = 0; (i + j < 10); i++, j++) {

// Do something

}
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved. 34

Note
If the loop-continuation-condition in a for loop is omitted,
it is implicitly true. Thus the statement given below in (a),
which is an infinite loop, is correct. Nevertheless, it is
better to use the equivalent loop in (b) to avoid confusion:

 for (; ;) {
 // Do something
}
 (a)

Equivalent while (true) {
 // Do something
}

(b)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 35

Caution
Adding a semicolon at the end of the for clause before
the loop body is a common mistake, as shown below:

Logic
Error

for (int i=0; i<10; i++);
{
System.out.println("i is " + i);

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 36

Caution, cont.
Similarly, the following loop is also wrong:
int i=0;
while (i < 10);
{
System.out.println("i is " + i);
i++;

}
In the case of the do loop, the following semicolon is
needed to end the loop.
int i=0;
do {
System.out.println("i is " + i);
i++;

} while (i<10);

Logic Error

Correct

6/16/2018

7

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 37

Which Loop to Use?
The three forms of loop statements, while, do-while, and for, are
expressively equivalent; that is, you can write a loop in any of these
three forms. For example, a while loop in (a) in the following figure
can always be converted into the following for loop in (b):

A for loop in (a) in the following figure can generally be converted into the
following while loop in (b) except in certain special cases (see Review Question
3.19 for one of them):

 for (initial-action;
 loop-continuation-condition;
 action-after-each-iteration) {
 // Loop body;
}
 (a)

Equivalent

(b)

initial-action;
while (loop-continuation-condition) {
 // Loop body;
 action-after-each-iteration;
}

 while (loop-continuation-condition) {
 // Loop body
}

(a)

Equivalent

(b)

for (; loop-continuation-condition;) {
 // Loop body
}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 38

Recommendations
Use the one that is most intuitive and comfortable for
you. In general, a for loop may be used if the number of
repetitions is known, as, for example, when you need to
print a message 100 times. A while loop may be used if
the number of repetitions is not known, as in the case of
reading the numbers until the input is 0. A do-while loop
can be used to replace a while loop if the loop body has to
be executed before testing the continuation condition.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 39

Nested Loops

Problem: Write a program that uses nested for
loops to print a multiplication table.

MultiplicationTable Run

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 40

Minimizing Numerical Errors
Numeric errors involving floating-point
numbers are inevitable. This section discusses
how to minimize such errors through an
example.

Here is an example that sums a series that
starts with 0.01 and ends with 1.0. The
numbers in the series will increment by 0.01,
as follows: 0.01 + 0.02 + 0.03 and so on.

TestSum Run

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 41

Problem:
Finding the Greatest Common Divisor

Problem: Write a program that prompts the user to enter two positive
integers and finds their greatest common divisor.

Solution: Suppose you enter two integers 4 and 2, their greatest
common divisor is 2. Suppose you enter two integers 16 and 24, their
greatest common divisor is 8. So, how do you find the greatest common
divisor? Let the two input integers be n1 and n2. You know number 1 is
a common divisor, but it may not be the greatest commons divisor. So
you can check whether k (for k = 2, 3, 4, and so on) is a common
divisor for n1 and n2, until k is greater than n1 or n2.

GreatestCommonDivisor Run

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 42

Problem: Predicting the Future Tuition
Problem: Suppose that the tuition for a university is $10,000 this year
and tuition increases 7% every year. In how many years will the
tuition be doubled?

FutureTuition Run

6/16/2018

8

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 43

Problem: Predicating the Future Tuition
double tuition = 10000; int year = 0 // Year 0
tuition = tuition * 1.07; year++; // Year 1
tuition = tuition * 1.07; year++; // Year 2
tuition = tuition * 1.07; year++; // Year 3
...

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 44

Case Study: Converting Decimals to
Hexadecimals

Hexadecimals are often used in computer systems programming (see
Appendix F for an introduction to number systems). How do you
convert a decimal number to a hexadecimal number? To convert a
decimal number d to a hexadecimal number is to find the hexadecimal
digits hn, hn-1, hn-2, ... , h2, h1, and h0 such that

These hexadecimal digits can be found by successively dividing d by
16 until the quotient is 0. The remainders are h0, h1, h2, ... , hn-2, hn-1,
and hn.

01221 161616...161616 01221 u�u�u��u�u�u ��
�� hhhhhhd nnn

nnn

Dec2Hex Run

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 45

Problem: Monte Carlo Simulation
The Monte Carlo simulation refers to a technique that uses random
numbers and probability to solve problems. This method has a wide
range of applications in computational mathematics, physics,
chemistry, and finance. This section gives an example of using the
Monto Carlo simulation for estimating S.

x

y

1 -1

1

-1

circleArea / squareArea = S / 4.

S can be approximated as 4 *
numberOfHits / numberOfTrials

Companion Website

MonteCarloSimulation Run

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 46

Using break and continue
Examples for using the break and continue
keywords:

) TestBreak.java

) TestContinue.java

TestBreak Run

TestContinue Run

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 47

break
 public class TestBreak {
 public static void main(String[] args) {
 int sum = 0;
 int number = 0;

 while (number < 20) {
 number++;
 sum += number;
 if (sum >= 100)
 break;
 }

 System.out.println("The number is " + number);
 System.out.println("The sum is " + sum);
 }
}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 48

continue

 public class TestContinue {
 public static void main(String[] args) {
 int sum = 0;
 int number = 0;

 while (number < 20) {
 number++;
 if (number == 10 || number == 11)
 continue;
 sum += number;
 }

 System.out.println("The sum is " + sum);
 }
}

6/16/2018

9

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 49

Guessing Number Problem Revisited

Here is a program for guessing a number. You can
rewrite it using a break statement.

GuessNumberUsingBreak Run

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 50

Problem: Checking Palindrome
A string is a palindrome if it reads the same forward and backward.
The words “mom,” “dad,” and “noon,” for instance, are all
palindromes.
The problem is to write a program that prompts the user to enter a
string and reports whether the string is a palindrome. One solution is
to check whether the first character in the string is the same as the last
character. If so, check whether the second character is the same as the
second-to-last character. This process continues until a mismatch is
found or all the characters in the string are checked, except for the
middle character if the string has an odd number of characters.

String s

low

high

a

b

c

d

e

f

g

n

h

g

f

e

d

c

b

a

Palindrome Run

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 51

Problem: Displaying Prime Numbers
Problem: Write a program that displays the first 50 prime numbers in
five lines, each of which contains 10 numbers. An integer greater than
1 is prime if its only positive divisor is 1 or itself. For example, 2, 3,
5, and 7 are prime numbers, but 4, 6, 8, and 9 are not.

Solution: The problem can be broken into the following tasks:
•For number = 2, 3, 4, 5, 6, ..., test whether the number is prime.
•Determine whether a given number is prime.
•Count the prime numbers.
•Print each prime number, and print 10 numbers per line.

PrimeNumber Run

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 52

Debugging Loops in IDE ToolsCompanion
Website

Supplements II.C, II.E, and II.G.

